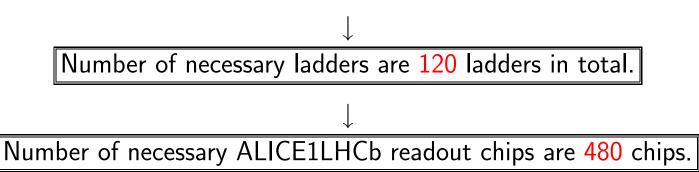
The status of wafer probing for PHENIX silicon pixel tracker

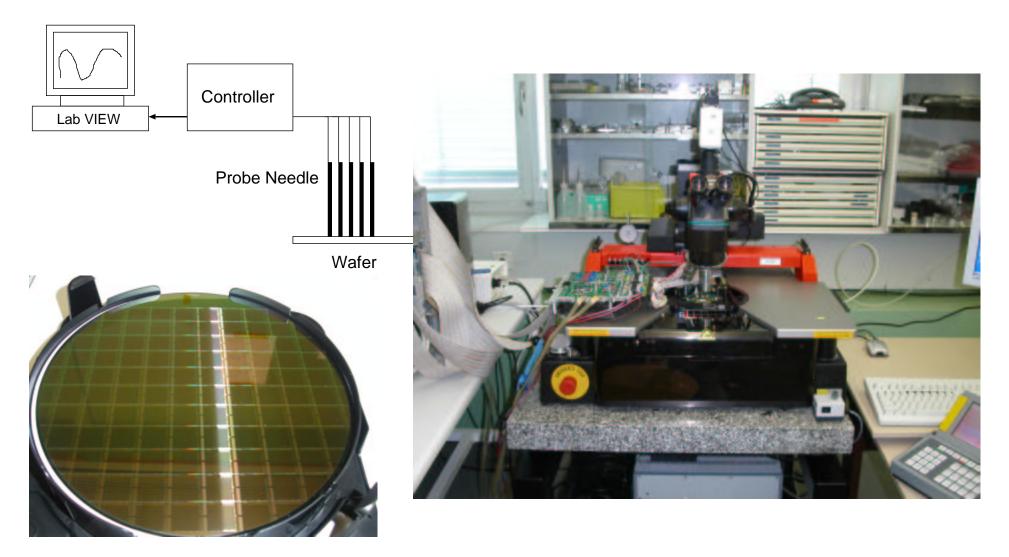

9 December 2004

RIKEN Kohei Fujiwara, Johann.M.Heuser, Tatsuya Iwabuti

1. Introduction

 \lesssim The PHENIX silicon pixel tracker consits of 2 cylindlical layers.

- 1st layer:10 staves
- 2nd layer:20 staves



 \precsim We aim at obtaining 480 readout chips+spares(\sim 600 chips).

- We have probed 13 out of 16 wafers(1118 chips).
- 14th wafer is under probing.
- We have 374 chips for ladders.

2. Wafer probing

 \therefore ALICE1LHCb readout chips are probed on the semi automatic prober in wafer level. \therefore One wafer contains 86 readout chips.

Classification

 \precsim The test system is constructed by NI LabView and ROOT.

 \rightleftarrows Readout chips are classified into 3 classes.

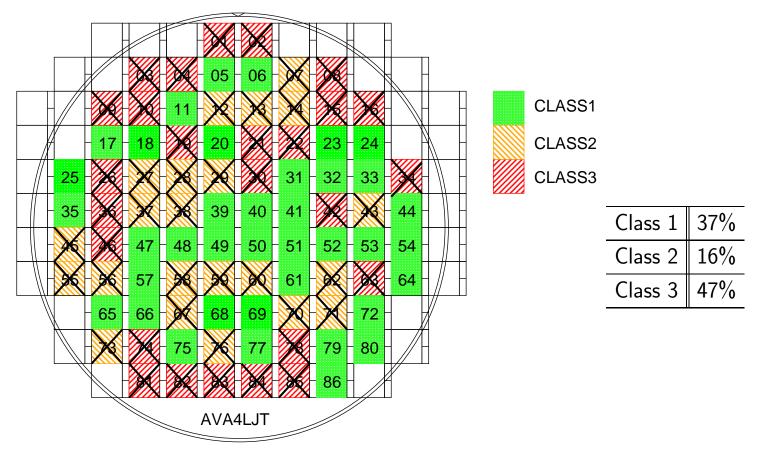
The item of common test				
\precsim JTAG and DAC functionality for chip control.	\precsim No noisy pixels.			
\therefore Current for analog circuit < 350mA.	☆ Normal digital output.			
rightarrow Current for digital circuit < 270mA.	\precsim Existence of a threshold.			

 $\downarrow \mathsf{Passed}$

 ${\downarrow}\mathsf{Failed}$

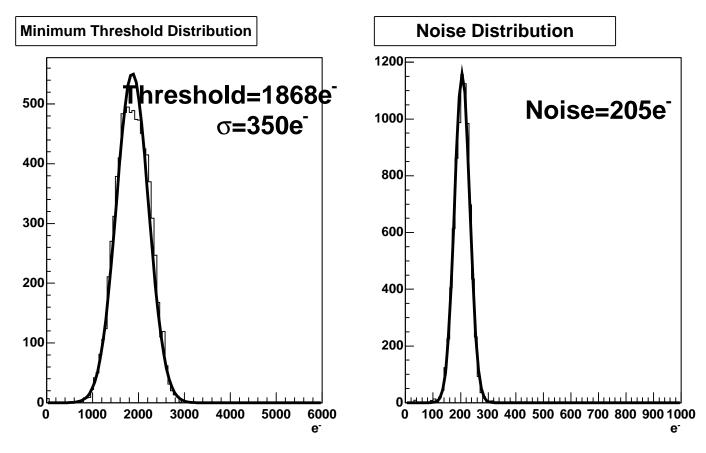
Classification for Class 1 or Class 2
\precsim Number of dead pixels $< 1\%$ (82 pixels).
\precsim Minimum threhsold < 30mV(1980e ⁻).

Class 3


 $\downarrow \mathsf{Passed}$

↓Failed

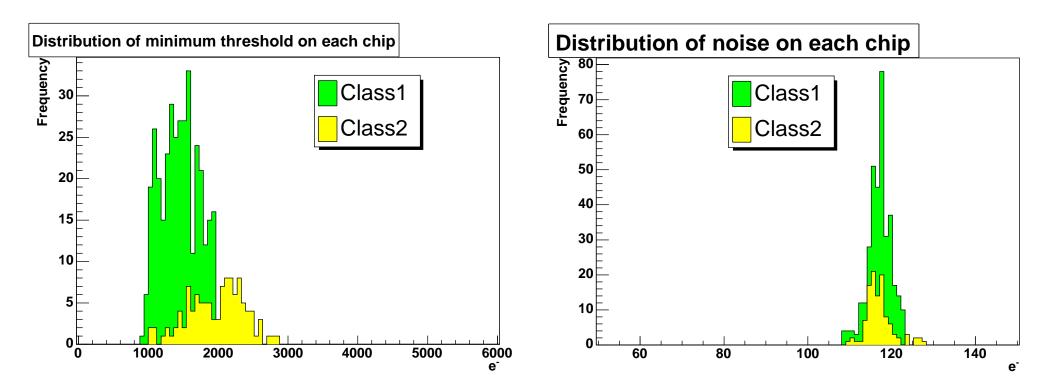
3. Result of probing


A typical wafer map(4th:AVA4LJT)

 \precsim 38 Class 1 chips are on the wafer.

 \precsim Class 1 chips are mainly in the center of a wafer.

Minimum threshold distribution and noise distribution on a chip



 $\stackrel{\wedge}{\sim}$ The minimum threshold is 1868e⁻.

 \precsim Usually a thickness of 200 μ m silicon sensor by the MIP is around 22000e⁻.

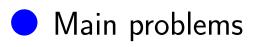
The signal to the noise ratio is more than 10 on the ALICE1LHCb readout chip.

Minimum threshold and noise distribution for all Class 1 and Class 2 chips

 \gtrsim The range of minimum threshold on each Class 1 chip is wide.

4. Occured problems

 \precsim From 9th wafer we have some problems.


We get the yeild rate as the following.

Class 1	31.3%	374 chips
Class 2	10.1%	120 chips
Class 3	57.6%	698 chips

Wafer 9th, 10th, 11th, 12th, 13th and 14th have problems.

 \rightarrow At present the yeild rate is going down.

	Wafer Name	Class 1	Class 2	Class 3		Wafer Name	Class 1	Class 2	Class 3
1	ABA4J4T	46.5%	4.6%	48.8%	8	AZA4IZT	25.6%	4.7%	70.9%
2	AAA4J5T	37.2%	2.3%	60.4%	9	ATA4I5T	43.0%	3.5%	5.3%
3	A9A4J6T	29.1%	9.3%	61.6%	10	AZA4E1T	19.8%	2.3%	77.9%
4	AVA4LJT	44.2%	29.1%	26.7%	11	ACA4J3T	0.0%	1.2%	98.8%
5	ATA4LLT	27.9%	32.6%	39.5%	12	AQA4DTT	24.4%	1.2%	74.4%
6	A3A4JCT	40.7%	15.1%	44.2%	13	A9A4ERT	30.2%	2.3%	67.5%
7	AXA4LHT	38.4%	22.1%	39.5%	14	AWA4E4T	32.9%	11.0%	56.1%

 \precsim JTAG functionality test error around column 12.

 \precsim Missing clolumns around column 12.

 \rightarrow ATA4I5T(9th), AZA4E1T(10th), AQA4DTT(12th), A9A4ERT(13th), AWA4E4T(14th)

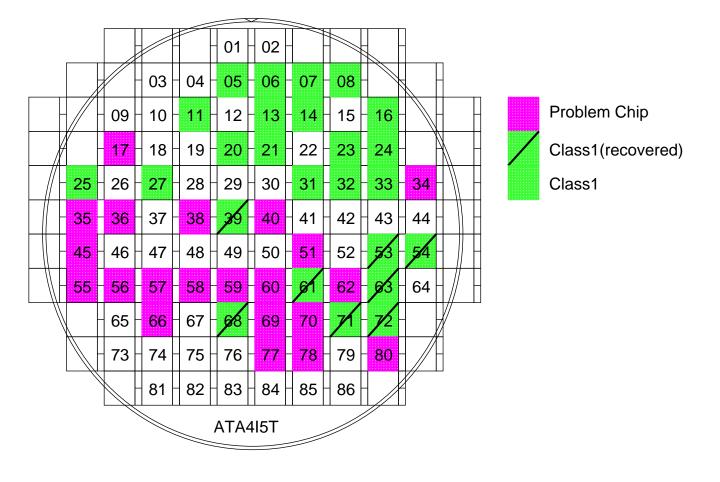
eter Chochula, 2000,2001	
Dac to Scan Test DAC LO Test DAC LO DAC HI Starting Value \$1.100000 1.100000 DAC HI Actual V DAC Lo Starting Value \$1.00000 1.000000 DAC Lo Actual V DAC Step \$1.00000	
Pre_VTH Starting Value 195 Pre_VTH Actual V Pre_VTH Starting Value 195 Pre_VTH Actual V Pre_VTH Step 11 Active Step First row to scan 255 Enabled row Number of rows to scan 256	Talue Intensity Graph 300- 250- 200- 150- 100- 200- -40 -20
Number of Enabled # 12 Number of Enabled # 12 pixels in row Tested Plane Plane 0 First enabled pixel # 0 RC in use RC 0 Maximg ON Logging Off 22 at	S0- 0- 0 5 10 15 20 25 30 32 Local Depley ON Benets Chipley ON [][[2] = 4.0] [2] ± 1

 \therefore About wafer ACA4J3T(11th), 60 out of 86 chips draw 2 times more current.

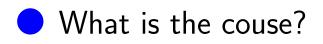
Problem chips

 \precsim At the moment we have 77 problem chips in total.

Wafer name	Problem chips
ATA4I5T(9th)	23/86
AZA4E1T(10th)	26/86
AQA4DTT(12th)	22/86
A9A4ERT(13th)	3/86
AWA4E4T(14th)	3/86


 $\stackrel{\scriptstyle <}{\scriptstyle \sim}$ We could recover these chips by increasing Vdd_Analog which is applied to analog circuit.

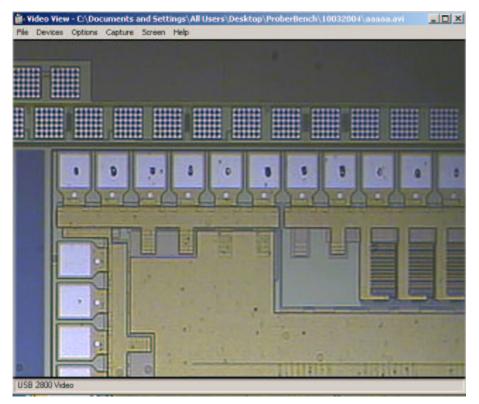
 \rightarrow JTAG functionality test error and missing columns were recovered.


 \precsim Then 29 chips became Class1 in total.

Wafer name	Recovered chips	Recovered / Problem
ATA4I5T	8	26.7%
AZA4E1T	7	26.9%
AQA4DTT	11	50.0%
A9A4ERT	2	66.7%
AWA4E4T	1	33.3%

An example of problem wafer map(ATA4I5T:9th)

Wafer name	Recovered chips	Recovered / Problem
ATA4I5T	8	27.5%


 \therefore These wafers might have a production error?

 \checkmark Probe neeldes on the probe card became bad?

No resharpened tips

						:
8	• •	0 4	9 9	0 8		•
1-0	-0-0-	50-0	- ger	Jacia	<u>dect</u>	-0
Lin to	E	1		100		
•		페. 크				
	1		1			
			1. 0	1.00		

Now these couses are investigated by me and ALICE group.

5. Summary

 \precsim We get the yeild rate as the following.

Class 1	31.3%	374 chips
Class 2	10.1%	120 chips
Class 3	57.6%	698 chips

- \precsim At present we have 374 Class 1 chips, and need 226 chips more.
- \precsim We will be finished probing 15 and half wafers by the end of this month.
- \gtrsim We expect that in order to get 600 Class 1 chips, it is neccesary to prepare 5 wafers at least.
- \gtrsim 28 out of 77 chips were recovered by increasing Vdd_Analog in total.
- \Rightarrow A ladder should be constructed with chips which are driven with same Vdd_Analog. Or these chips should be used as single assemblies.
- \precsim We will cross-check problem chips by a reshepened needles.
- \therefore The prober at CERN will be brought to RIKEN in the beginning of February in 2005.
- \precsim We will continue probing new wafers and ladders after bringing the prober.